iaf_bw_2001 – Leaky integrate-and-fire-neuron model with conductance-based synapses and additional NMDA receptors with simplified dynamics.

Description

iaf_bw_2001 is a leaky integrate-and-fire neuron model with

  • an approximate version of the neuron model described in [1], [2], [3].

  • exponential conductance-based AMPA and GABA-synapses

  • exponential conductance-based NMDA-synapses weighted such that it approximates the original non-linear dynamics

  • a fixed refractory period

  • no adaptation mechanisms

Neuron and synaptic dynamics

The membrane potential and synaptic variables evolve according to

\[\begin{split}C_\mathrm{m} \frac{dV(t)}{dt} &= -g_\mathrm{L} (V(t) - V_\mathrm{L}) - I_\mathrm{syn} (t) \\[3ex] I_\mathrm{syn}(t) &= I_\mathrm{AMPA}(t) + I_\mathrm{NMDA}(t) + I_\mathrm{GABA}(t) (t) \\[3ex] I_\mathrm{AMPA} &= (V(t) - V_E)\sum_{j \in \Gamma_\mathrm{ex}}^{N_E}w_jS_{j,\mathrm{AMPA}}(t) \\[3ex] I_\mathrm{NMDA} &= \frac{(V(t) - V_E)}{1+[\mathrm{Mg^{2+}}]\mathrm{exp}(-0.062V(t))/3.57}\sum_{j \in \Gamma_\mathrm{ex}}^{N_E}w_jS_{j,\mathrm{NMDA}}(t) \\[3ex] I_\mathrm{GABA} &= (V(t) - V_I)\sum_{j \in \Gamma_\mathrm{in}}^{N_E}w_jS_{j,\mathrm{GABA}}(t) \\[5ex] \frac{dS_{j,\mathrm{AMPA}}}{dt} &= -\frac{j,S_{\mathrm{AMPA}}}{\tau_\mathrm{AMPA}}+\sum_{k \in \Delta_j} \delta (t - t_j^k) \\[3ex] \frac{dS_{j,\mathrm{GABA}}}{dt} &= -\frac{S_{j,\mathrm{GABA}}}{\tau_\mathrm{GABA}} + \sum_{k \in \Delta_j} \delta (t - t_j^k) \\[3ex] \frac{dS_{j,\mathrm{NMDA}}}{dt} &= -\frac{S_{j,\mathrm{NMDA}}}{\tau_\mathrm{NMDA,decay}} + \sum_{k \in \Delta_j} (k_0 + k_1 S(t)) \delta (t - t_j^k) \\[3ex]\end{split}\]

where \(\Gamma_\mathrm{ex}\) and \(\Gamma_\mathrm{in}\) are index sets for presynaptic excitatory and inhibitory neurons respectively, and \(\Delta_j\) is an index set for the spike times of neuron \(j\).

\[\begin{split}k_0 &= (\alpha \tau_r)^{\frac{\tau_r}{\tau_d}} \gamma \big[1 - \frac{\tau_r}{\tau_d}, \alpha \tau_r \big] \\[3ex] k_1 &= \mathrm{exp}(-\alpha \tau_\mathrm{r}) - 1\end{split}\]

where \(\gamma\) is the lower incomplete gamma function. For these values of \(k_0\) and \(k_1\), the approximate model will approach the exact model for large t.

The specification of this model differs slightly from the one in [1]. The parameters \(g_\mathrm{AMPA}\), \(g_\mathrm{GABA}\), and \(g_\mathrm{NMDA}\) have been absorbed into the respective synaptic weights. Additionally, the synapses from the external population are not separated from the recurrent AMPA-synapses.

See also [2] and [3].

For more implementation details and a comparison to the exact version, see:

Parameters

The following parameters can be set in the status dictionary.

Parameter

Default

Math equivalent

Description

E_L

-70.0 mV

\(E_\mathrm{L}\)

Leak reversal potential

E_ex

0.0 mV

\(E_\mathrm{ex}\)

Excitatory reversal potential

E_in

-70.0 mV

\(E_\mathrm{in}\)

Inhibitory reversal potential

V_th

-55.0 mV

\(V_\mathrm{th}\)

Spike threshold

V_reset

-60.0 mV

\(V_\mathrm{reset}\)

Reset potential of the membrane

C_m

250.0 pF

\(C_\mathrm{m}\)

Capacitance of the membrane

g_L

25.0 nS

\(g_\mathrm{L}\)

Leak conductance

t_ref

2.0 ms

\(t_\mathrm{ref}\)

Duration of refractory period

tau_AMPA

2.0 ms

\(\tau_\mathrm{AMPA}\)

Time constant of AMPA synapse

tau_GABA

5.0 ms

\(\tau_\mathrm{GABA}\)

Time constant of GABA synapse

tau_rise_NMDA

2.0 ms

\(\tau_\mathrm{NMDA,rise}\)

Rise time constant of NMDA synapse

tau_decay_NMDA

100.0 ms

\(\tau_\mathrm{NMDA,decay}\)

Decay time constant of NMDA synapse

alpha

0.5 ms^{-1}

\(\alpha\)

Rise-time coupling strength for NMDA synapse

conc_Mg2

1.0 mM

\([\mathrm{Mg}^+]\)

Extracellular magnesium concentration

gsl_error_tol

1e-3

Error tolerance for GSL RKF45-solver

The following state variables evolve during simulation and are available either as neuron properties or as recordables.

State variable

Initial value

Math equivalent

Description

V_m

-70 mV

\(V_{\mathrm{m}}\)

Membrane potential

s_AMPA

0

\(s_\mathrm{AMPA}\)

AMPA gating variable

s_GABA

0

\(s_\mathrm{GABA}\)

GABA gating variable

s_NMDA

0

\(s_\mathrm{NMDA}\)

NMDA gating variable

I_NMDA

0 pA

\(I_\mathrm{NMDA}\)

NMDA current

I_AMPA

0 pA

\(I_\mathrm{AMPA}\)

AMPA current

I_GABA

0 pA

\(I_\mathrm{GABA}\)

GABA current

Note

\(g_{\mathrm{\{\{rec,AMPA\}, \{ext,AMPA\}, GABA, NMBA}\}}\) from [1] are built into the weights in this NEST model, so these variables are set by changing the weights.

Note

For the NMDA dynamics to work, both pre-synaptic and post-synaptic neurons must be of type iaf_bw_2001. For AMPA/GABA synapses, any pre-synaptic neuron can be used.

Note

For technical reasons, spikes from iaf_bw_2001 neurons must be recorded with time_in_steps: True set in the spike recorder, ignoring the offset value. We hope to correct this in a future version of NEST.

Sends

SpikeEvent

Receives

SpikeEvent, CurrentEvent, DataLoggingRequest

References

See also

iaf_bw_2001_exact

Examples using this model