aeif_psc_delta_clopath – Adaptive exponential integrate-and-fire neuron

Description

aeif_psc_delta_clopath is an implementation of the neuron model as it is used in [1]. It is an extension of the aeif_psc_delta model and capable of connecting to a Clopath synapse.

Note that there are two points that are not mentioned in the paper but present in a MATLAB implementation by Claudia Clopath [3]. The first one is the clamping of the membrane potential to a fixed value after a spike occurred to mimic a real spike and not just the upswing. This is important since the finite duration of the spike influences the evolution of the convolved versions (u_bar_[plus/minus]) of the membrane potential and thus the change of the synaptic weight. Secondly, there is a delay with which u_bar_[plus/minus] are used to compute the change of the synaptic weight.

Note: Neither the clamping nor the delayed processing of u_bar_[plus/minus] are mentioned in [1]. However, they are part of an reference implementation by Claudia Clopath et al. that can be found on ModelDB [3]. The clamping is important to mimic a spike which is otherwise not described by the aeif neuron model.

For implementation details see the aeif_models_implementation notebook.

See also [2].

Note

The default refractory period for aeif models is zero, consistent with the model definition in Brette & Gerstner [4]. Thus, an aeif neuron with default parameters can fire multiple spikes in a single time step, which can lead to exploding spike numbers and extreme slow-down of simulations.

To avoid such unphysiological behavior, you should set a refractory time t_ref > 0.

Parameters

The following parameters can be set in the status dictionary.

Dynamic state variables

V_m

mV

Membrane potential

w

pA

Spike-adaptation current

z

pA

Spike-adaptation current

V_th

mV

Adaptive spike initiation threshold

u_bar_plus

mV

Low-pass filtered Membrane potential

u_bar_minus

mV

Low-pass filtered Membrane potential

u_bar_bar

mV

Low-pass filtered u_bar_minus

Membrane Parameters

C_m

pF

Capacity of the membrane

t_ref

ms

Duration of refractory period

V_reset

mV

Reset value for V_m after a spike

E_L

mV

Leak reversal potential

g_L

nS

Leak conductance

I_e

pA

Constant external input current

tau_u_bar_plus

ms

Time constant of u_bar_plus

tau_u_bar_minus

ms

Time constant of u_bar_minus

tau_u_bar_bar

ms

Time constant of u_bar_bar

Spike adaptation parameters

a

nS

Subthreshold adaptation

b

pA

Spike-triggered adaptation

Delta_T

mV

Slope factor

tau_w

ms

Adaptation time constant

tau_z

ms

Spike afterpotential current time constant

I_sp

pA

Depolarizing spike afterpotential current magnitude

V_peak

mV

Spike detection threshold

V_th_max

mV

Value of V_th after a spike

V_th_rest

mV

Resting value of V_th

Clopath rule parameters

A_LTD

1/mV

Amplitude of depression

A_LTP

1/mV^2

Amplitude of facilitation

theta_plus

mV

Threshold for u

theta_minus

mV

Threshold for u_bar_[plus/minus]

A_LTD_const

boolean

Flag that indicates whether A_LTD_ should be constant (true, default) or multiplied by u_bar_bar^2 / u_ref_squared (false).

delay_u_bars

real

Delay with which u_bar_[plus/minus] are processed to compute the synaptic weights.

U_ref_squared

real

Reference value for u_bar_bar_^2.

Other parameters

t_clamp

ms

Duration of clamping of Membrane potential after a spike

V_clamp

mV

Value to which the Membrane potential is clamped

Integration parameters

gsl_error_tol

real

This parameter controls the admissible error of the GSL integrator. Reduce it if NEST complains about numerical instabilities.

Sends

SpikeEvent

Receives

SpikeEvent, CurrentEvent, DataLoggingRequest

References

See also

aeif_psc_delta, clopath_synapse, hh_psc_alpha_clopath

Examples using this model