eprop_learning_signal_connection – Synapse model transmitting feedback learning signals for e-prop plasticity ============================================================================================================= Description +++++++++++ ``eprop_learning_signal_connection`` is an implementation of a feedback connector from ``eprop_readout`` readout neurons to ``eprop_iaf`` or ``eprop_iaf_adapt`` recurrent neurons that transmits the learning signals :math:`L_j^t` for eligibility propagation (e-prop) plasticity and has a static weight :math:`B_{jk}`. E-prop plasticity was originally introduced and implemented in TensorFlow in [1]_. For more information on e-prop plasticity, see the documentation on the other e-prop models: * :doc:`eprop_iaf<../models/eprop_iaf/>` * :doc:`eprop_iaf_adapt<../models/eprop_iaf_adapt/>` * :doc:`eprop_readout<../models/eprop_readout/>` * :doc:`eprop_synapse<../models/eprop_synapse/>` Details on the event-based NEST implementation of e-prop can be found in [2]_. Parameters ++++++++++ The following parameters can be set in the status dictionary. ========== ===== ================ ======= =============== **Individual synapse parameters** --------------------------------------------------------- Parameter Unit Math equivalent Default Description ========== ===== ================ ======= =============== ``delay`` ms :math:`d_{jk}` 1.0 Dendritic delay ``weight`` pA :math:`B_{jk}` 1.0 Synaptic weight ========== ===== ================ ======= =============== Recordables +++++++++++ The following variables can be recorded. Note that since this connection lacks a plasticity mechanism the weight does not evolve over time. ============== ==== =============== ============= =============== **Synapse recordables** ----------------------------------------------------------------- State variable Unit Math equivalent Initial value Description ============== ==== =============== ============= =============== ``weight`` pA :math:`B_{jk}` 1.0 Synaptic weight ============== ==== =============== ============= =============== Usage +++++ This model can only be used in combination with the other e-prop models and the network architecture requires specific wiring, input, and output. The usage is demonstrated in several :doc:`supervised regression and classification tasks <../auto_examples/eprop_plasticity/index>` reproducing among others the original proof-of-concept tasks in [1]_. Transmits +++++++++ LearningSignalConnectionEvent References ++++++++++ .. [1] Bellec G, Scherr F, Subramoney F, Hajek E, Salaj D, Legenstein R, Maass W (2020). A solution to the learning dilemma for recurrent networks of spiking neurons. Nature Communications, 11:3625. https://doi.org/10.1038/s41467-020-17236-y .. [2] Korcsak-Gorzo A, Stapmanns J, Espinoza Valverde JA, Plesser HE, Dahmen D, Bolten M, Van Albada SJ, Diesmann M. Event-based implementation of eligibility propagation (in preparation) See also ++++++++ Examples using this model +++++++++++++++++++++++++ .. listexamples:: eprop_learning_signal_connection