.. _nest_benchmark_results: NEST performance benchmarks =========================== NEST performance is continuously monitored and improved across various network sizes. Here we show benchmarking results for NEST version 3.8 on Jureca-DC [1]_. The benchmarking framework and the structure of the graphs is described in [2]_. For details on `State Propagation` (i.e., `Simulation Run`), see the guides :ref:`built_in_timers` and :ref:`run_simulations` Strong scaling experiment of the Microcircuit model [3]_ --------------------------------------------------------- .. grid:: 1 1 1 1 .. grid-item:: :columns: 10 :class: sd-align-major-center .. image:: /static/img/mc_benchmark.png .. grid:: 1 1 1 1 .. grid-item:: :columns: 10 :class: sd-align-minor-center * The model has ~80 000 neurons and ~300 million synapses, minimal delay 0.1 ms * 2 MPI processes per node, 64 threads per MPI process * Increasing number of computing resources decrease simulation time * Data averaged over 3 runs with different seeds, error bars indicate standard deviation * The model runs faster than real time [4]_ Strong scaling experiment of the Multi-area-model [5]_ ------------------------------------------------------- .. grid:: 1 1 1 1 .. grid-item:: :class: sd-align-major-center :columns: 10 Dynamical regime: Ground state .. image:: /static/img/mam_ground-state_benchmark.png Dynamical regime: Metastable state .. image:: /static/img/mam_metastable-state_benchmark.png .. grid:: 1 1 1 1 .. grid-item:: :columns: 10 :class: sd-align-minor-center * The model has ~4.1 million neurons and ~24 billion synapses, minimal delay 0.1 ms * It can be run in two different dynamical regimes: the ground state and the metastable state [5]_. * 2 MPI processes per node, 64 threads per MPI process * Steady decrease of run time with additional compute resources * Data averaged over 3 runs with different seeds, error bars indicate standard deviation Weak scaling experiment of the HPC benchmark model [6]_ -------------------------------------------------------- .. grid:: 1 1 1 1 .. grid-item:: :columns: 10 :class: sd-align-major-center .. image:: /static/img/hpc_benchmark.png .. grid:: 1 1 1 1 .. grid-item:: :columns: 10 :class: sd-align-minor-center * The size of network scales proportionally with the computational resources used * Largest network size in this diagram: ~5.8 million neurons and ~65 billion synapses, minimal delay 1.5 ms * 2 MPI processes per node, 64 threads per MPI process * The figure shows that NEST can handle massive networks and simulate them efficiently * Data averaged over 3 runs with different seeds, error bars indicate standard deviation .. seealso:: * Guide to :ref:`Built-in timers ` and :ref:`run_simulations`. Example networks: * :doc:`/auto_examples/Potjans_2014/index` * `Multi-area model `_ * :doc:`/auto_examples/hpc_benchmark` References ---------- .. [1] Juelich Supercomputing Centre. 2021. JURECA: Data Centric and Booster Modules implementing the Modular Supercomputing Architecture at Jülich Supercomputing Centre. Journal of large-scale research facilities, 7, A182. DOI: http://dx.doi.org/10.17815/jlsrf-7-182 .. [2] Albers J, Pronold J, Kurth AC, Vennemo SB, Haghighi Mood K, Patronis A, Terhorst D, Jordan J, Kunkel S, Tetzlaff T, Diesmann M and Senk J (2022). A Modular Workflow for Performance Benchmarking of Neuronal Network Simulations. Frontiers in Neuroinformatics(16):837549. https://doi.org/10.3389/fninf.2022.837549 .. [3] Potjans TC. and Diesmann M. 2014. The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model. Cerebral Cortex. 24(3):785–806. DOI: `10.1093/cercor/bhs358 `__. .. [4] Kurth AC, Senk J, Terhorst D, Finnerty J, Diesmann M. 2022. Sub-realtime simulation of a neuronal network of natural density. Neuromorphic computing and engineering 2(2), 021001 https://iopscience.iop.org/article/10.1088/2634-4386/ac55fc/meta .. [5] Schmidt M, Bakker R, Hilgetag CC, Diesmann M and van Albada SJ. 2018. Multi-scale account of the network structure of macaque visual cortex. Brain Structure and Function. 223: 1409 https://doi.org/10.1007/s00429-017-1554-4 .. [6] Jordan J, Ippen T, Helias M, Kitayama I, Sato M, Igarashi J, Diesmann M, Kunkel S. 2018. Extremely scalable spiking neuronal network simulation code: From laptops to exacale computers. Frontiers in Neuroinformatics. 12. https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2018.00002